Hallo,
danke für die nette Rückmeldung, ich schreib Montag noch eine unangenehme Klausur deswegen etwas Kürzer. Die Hoffnung exmatrikuliert sich bekanntermaßen zuletzt. Nachtrag: Naja es wurde etwas länger, aber es ist ja auch erst der erste Versuch.
Das müsste ja bedeuten, dass eine Spannung bzw. Potentialdifferenz ist nichts anderes als ein Effekt hervorgerufen durch die unterschiedliche Lage zweier Bezugspunkte in einem elektrisches Feld ist?
Ja du hast Potentialdifferenzen ja auch im Raum, das ganze ist garnichtmal so physikalisch-wissenschaftlich wie es sich anhört, es gibt ja auch Elektrofeldmeter die das messen können.
Die Ursachen von Elektrischen Feldern sind: freie/gebundene Ladungen und sich verändernde Magnetfelder - nagel mich nicht drauf fest aber ich glaub das sind alle. Analog dazu die Ursachen von Magnetischen Feldern sind freie/gebundene Ströme (Magnete zählen zu den gebunden Strömen physikalisch) und sich verändernde E-Felder.
Das ganze ist leider recht komplex und die Anfänge der Schulphysik haben das ganze ein wenig verzerrend vereinfacht, sodass man erstmal vieles gelernte über den Haufen schmeißen muss, zumindest hatte ich das Gefühl.
Ich fand das Buch "Theoretische Elektrotechik" von Kupfmüller/Mathis aus dem Springer-Verlag ganz gut, allerdings Vorlesungsbegleitend. Wenn du irgendwas technisches/physikalisches Studierst ist es aber definitiv gut und recht verständlich.
Hmja, ist richtig, der ripple, also die Restwelligkeit ist hier am geringsten.
Das wird in der Tat eng mit einer 6,3VAC-Wicklung. Möglicherweise bringt der Trafo dank schlechtem Netz 0,1-0,2V weniger, dann der Spannungsverlust durch die Dioden (selbst bei Schottkys) und dann ist nichtmehr genug "Luft" zum regeln da.
Da die meisten "Standardtrafos" mit 6,3V-Wicklungen verkauft werden, ist es denk ich zweckmäßig hier mal weiter drüber nachzudenken.
Man könnte ja Spannungsverdoppeln via Delon-oder Greinacherschaltung?! - Spannung zum regeln wäre dann reichlich vorhanden.
Ripple ist bei einer (ordentlichen) Längsreglung theoretisch überhaupt nichtmehr vorhanden. Ansonsten kann man sich die benötigte Spannung vor dem Längsregler ja wieder ausrechnen*. U_ein - U_ripple = U_aus + U_regelreserve. U_Regelreserve ist Stromabhängig (->Datenblatt), U_Ripple hängt von der Siebung und der Art der Gleichrichtung (Spannungsverdoppler brauchen die doppelte Siebkapazität) ab.
Eine längsgeregelte Gleichspannungsheizung für 6,3V aufzubauen halte ich nicht für sinnvoll, man benötigt hier den doppelten Strom, das lässt die Verlustleitung in den Dioden und im Längsregler* auf das doppelte ansteigen. Die üblichen Low-Drop Längsregler haben auch nur 1A Maximalstrom.
Daher ist es auch nicht sinnvoll mit 12V auf 6,3V runterzuregeln, man verbrät einfach einen Großteil der Leistung im Längsregler, muss den dann Kühlen etc.
Hmja, wenn ich das richtig verstehe bleibt nurnoch der ripple, der als Brumm "einstreuen" könnte.
D.h. wenn man den ripple auf 0,63V reduzieren kann, dann hat man eine theoretische Brummminderung von Faktor 10!
Das stimmt, allerdings streut 50Hz auch für unsere Ohren weniger Hörbar in unsere Verstärker ein als 100Hz + Oberwellen. Die Kapazitive Kopplung von Kathode zu Heizung spielt auch eine größere Rolle bei höheren Frequenzen (auch, wenn meiner Schätzung nach der Effekt eher klein ist). Eine Frequenz moduliert sich wahrscheinlich auch nicht so störend in die Verzerrung wie viele. Als Fazit würd ich sagen, ganz so schön wie auf dem Papier ists nicht, aber sicher weitaus Nebengeräuschärmer als eine Wechselspannungsheizung.
Jetzt hab ich noch etwas gelesen und dabei bei Wikipedia unter dem Stichwort "Glättungskondensator" folgendes gefunden;
Wenn man hier mal von besagten 0,63V ausgeht und den nötigen C für eine ECC8x berechnet, dann kommt man auf die häufig verwendeten 4700µF! - Also hat da doch mal jemand gerechnet oder wars vll. nur ein glücklicher Zufall?
[...]
Ansonsten kommst du bei einem Strom von 0,6A auf eine Kapazität von 7050µF. Laut obiger Formel wäre das ein Ripple von 0,85V, das wären 13,5% des mit AC-geheizten Brumms. Ich denke, dass wenn man einen ohnehin ruhigen Amp hat, das völlig ausreichend ist um Heizungsbrumm auf ein nicht wahrnehmbares Maß zu reduzieren.
Es ist sogar noch weniger, wenn der Sinus den Wert 0,9 erreicht wird der Kondensator ja schon wieder geladen. Das ganze macht hier aber nur wenige % aus. Bei schlechteren Siebungen ist das interessanter.
Das Problem ist wir haben zwei festgelegte Sachen die wir beachten müssen: Die Ausgangsspannung nach dem Gleichrichter und die Leistung die die Röhrenheizung braucht. Wir müssen uns bei der Siebkapaziät nach der Leistung und nicht nach der Brummspannung richten. Also Funktion aus (Co-)Sinus und E-Funktion aufstellen Quadrieren und integrieren. Ich mach das nach dem 22.Feb irgendwann, ich hab noch ne Klausur geschoben wo ich all so einen s... machen muss, da kann ich das als Klausurvorbereitung vor mir rechtfertigen.
Joachim, ich hab nochmal in deine Unterlagen geschaut. Warum machst du die Serienschaltung aus C27/28?
Da erschließt sich mir der Sinn nicht. Eigentlich hast du doch schon einen Massebezug über die Widerstände R85/86?
Das kann sein, dass der Restbrumm dank der Schaltung so auch symmetrisiert wird und nicht im 50Hz Takt bewegt. Das ganze ist aber nicht vollständig durchdacht und mir fehlt auch etwas die Energie das komplett zu durchdenken.
Was mich jetzt noch interessiert: - Wie siehts mit dem Stromflußwinkel aus?
Heizt man z.b. eine ganze Vorstufe mit 4-5 Röhren, müsste man um 22´000µF verbauen. Das sind natürlich schon heftige Kapazitäten, sodass Stromimpulse recht groß werden. Wie kann man da sichergehen, dass Trafo und Gleichrichter das mitmachen?
Kommt auf den konkreten Fall an, da muss man in die Datenblätter schauen
. Das ganze ist allerdings unkritisch, die Leistungsangeben sind in der Regel über eine Periode zu sehen und nicht im kurzen Ladungsfall. Ne 1n4007 kann in einer Gleichrichtung das 30-fache des Stroms ab, beim Trafo wirds wahrscheinlich eher mehr sein.
Das Problem des kleinen Stromflusswinkels ist der hohe Strom und der dadurch resultierende höhere Spannungsabfall im Trafo, das müsste man dann ein wenig einkalkulieren, obs da eine zuverlässige Formel gibt weiß ich nicht, ich würd hier abschätzen.
Grüße
Henning
*tut mir leid ich hasse das Wort mitlerweile auch
** auch wenn es hier ein Glück nicht so pedantisch zugeht dass man bei Kleinigkeiten gleich verbessert wird wenn man etwas vereinfacht oder die Begriffe nicht 200%tig korrekt sind: es ist mehr als das doppelte denn der Spannungsabfall über Dioden und Längsregler steigt.