Hallo
Bei einem Verstärker in Klasse A ist ja nun die mittlere Stromaufnahme recht hoch und ein weiches Netzteil somit meist in den Knien oder zumindest in gebeugter Haltung. Geben ich nun ein Signal auf die Endstufe so schwankt die Versorgungsspannung in erheblichem Maße mit, und mit ihr die Arbeitspunkte der Röhren.
Als Beispiel: nehme ich den Arbeitspunkt mit der Versorgungsspannung Ub=300VDC, Schirmgitter ebenfalls auf 300VDC Ug1=-11VDC Kathodenwiderstand 275R, so erhalte ich bei einer Last von 5k einen Anodenstrom von 35mA.
Wird die EL84 nun mit 8Veff am Gitter ausgesteuert so schwankt die Versorgungsspannung zwischen 390VDC und 355VDC mit, jedenfalls sagt mir das der PSU-Designer von Duncans Amp Tools und das Datenblatt der EL84, vielleicht lügen sie mich ja auch an Wink
Ebenso hab ich ja am Kathodenwiderstand ebenfalls eine Schwankung des Spannungsabfalls zwischen 3VDC bei 12mA und 22VDC bei 86mA Kathodenstrom.
Somit ergibt sich eine effektive Schwankung der Spannung zwischen Anode und Kathode der EL84 zwischen 387VDC und 331VDC.
Das stimmt so nicht. Überlegen wir mal warum es schwanken soll. Genau weil es eine Stromänerung deltaI gibt. Und was schwankt, richtig die Spannung. Schwanken ist aber eine Änderung wir haben also ein deltaU. Und demnach können wir den Innenwiderstand es Netzteils berechnen:
Ri=deltaU/deltaI
Was bildet denn nun den Innwnwiderstand des Netzteils. Gucken wir hin dann haben wir eine Parallelschaltung des letzten Siebelkos mit noch etwas Kram prallel geschaltet. Der Blindwiderstand des Siebelkos parallel mit dem anderen Kram ergibt irgendeinen kleineren Widerstand. Gehen wir von schlimmsten Fall aus und er andere Kram häte einen uneneldich großen Widerstand. D.h. der Innwnwiderstand des Netzteils wird nur noch vom Siebelko bestimmt. Behalten wir das im Hinterkopf.
Deine Endröhre nimmt ja auch den Signalwechseltrom desltaI, aber sie lifert eine Andere Signalspannung an der Anode, das deltaU ist anders, des ist die Anodenwechselspannung die wir "~Ua" nennen wollen. Auch aus diesen Werten können wir einen Widerstand berechnen, das ist genau (wen wundert's) der Ra.
Wir müssen um Spannungschwankungen ausreichend klein zuhalten einfach nur dafür sorgen, dass am Ra sehr viel mehr Spannungsänderung ist als am Netzteil und zwar bei der unteren Grenzfrequenz. D.h. bei der unteren Grenzfrequenz muss der Blindwiderstand des Siebelko sehr viel kleiner als der Ra. Bei der EL84 wird häufig und erfolgreich mit 47uF gesiebt, das ergibt einen Blindwiderstand von 85Ohm bei 40Hz der Ra ist 5kOhm, das Verhältnis also etwa 1:60. Wenn du auf nummer sicher gehen willst, mach den Siebelko so, dass dein Blindwiderstand bei der unteren Grenzfrequenz 100 mal kleiner als der Ra ist. Das sollte auf jeden Fall genügen.
Ganz anders wird sie Sachlage in Klasse B oder AB. Hier ist die mittlere Stromaufnahme nicht konstant. D.h. geben wir 1 Minute lang richtig Signal auf den Verstärker, dann ist der Durchschnittsstrom in dieser Minute größer, als ließen wir ihn 1 Minute ruhen. Das ist in Klasse A nicht der Fall, hier ist der Durchsncittsstrom in der Minute mit Signal genau so groß, wie ind er ohne. Jetzt stellen wir uns vor wir hören Kraftwerks Menschmaschien. as Stück hat zm die 120BPM. D.h. 120mal Pro minute also 2 mal pro Sekunde kommt ein Bassanschlag. D.h. zweimal Pro sekunde steigt unser Strom durch den verstärker ordentlich an. Wäre er in Klasse A, wäre das nicht der Fall denn die postive Halbwelle zieht mehr strom in der niedrigen weniger und schon ist der Mittelwert genau so, als wäre garnischt passiert. Aber ein Klasse AB verstärker zeiht wirklich zweimal pro Sekunde mit dem Stroma n. D.h. wir haben hier die selben Verhältnisse wie in Klasse A, aber eben mit 2Hz und nicht 40Hz wie wir oben gerechnet haben. Deswegen sind die Anforderungen an das Netzteil eines Klasse AB Verstärkers sehr viel höher als die eines Klasse A Verstärkers. In Klasse A müssen wir uns nur um den Siebelko bei der unteren Grenzfrequenz kümmern ind AB müssen wir auch die Dynamik der Musik berücksichtigen.
Der Schirmgitterstrom schwankt zwischen 1,8mA und 11mA, Auch wieder mit 8Veff am Steuergitter. Im Mittel ist er im Datenblatt mit um die 5mA angegeben.
Nach dem Ohmschen Gesetz brauch ich bei 5mA einen Widerstand von etwa 12k um von der Betriebsspannung auf die gewünschten 300VDC zu kommen.
An diesen 12k kommt es nun zu einem Spannungsabfall von 24V bei negativer Aussteuerung, bei positiver Austeuerung zu einem Spannungsabfall von 132VDC, ergibt also eine Wechselspannung von 108Volt.
Bei 50VDC differenz am G2 hat man schon einen Unterschied im Anodenstrom von 50% also wären 108Volt schon eine Menge.
Richtig aber kompliziert gerechnet. 11mA-1,8mA=deltaIg2=9,2mA und deltaUg2=12k*9,2mA=110,4V FERTIG!
was aber deine 5mA
Ruhestromaufnahme zeigen, ist, dass die Mittlere Stromaufnahme (In etwas der Durchschnitt aus 11mA und 1,8mA) von 6,4mA dicht dranne liegt, so dass wir von einer konstanten mittleren Stromaufnahme des Schrimgitters ausgehen wollen.
Xc= 1/(2*pi*f*c)
kann ich in dem Fall also umstellen auf
C=1/(2*pi*f*Xc)
f wäre dann also die Grenzfrequenz ab der die entstehende Signalwechselspannung am Gitter gegen Masse Abgeleitet wird.
Folgende Fragen tun sich mir nun auf:
-Wie groß muss nun Xc sein? Und wie komme ich darauf?
-Wie bekomme ich die Schwankungen der Betriebsspannung da nun mit rein oder kann ich das ignorieren bzw. einfach ein härteres Netzteil einplanen?
Genau so kannst du Umstellen. Überlegen wir mal. Du sagst 50V Spannungsänderung (da haben wir wieder deltaU) am Schrimgitter verringernd en Anodenstrom auf die Hälfte. Ok das wird nicht passieren, weil das Steuergitter ja gegen hält, aber insgesamt wiird schon gut über das Schrimgitter gegengekoppelt. Sagen wir mal wir würden uns mit 5V Spannungsänderung am Schrimgitter zufreiden geben. Das entspräche dann noch einer Stromänderung von 5%, und wir haben ja noch das Steuergitter, so dass diese garnicht auftreten werden. Gehen wir also von 5V aus. Wie gesagt siehht deer Signalstrom die Parallelschaltung aus deinem 12k Schrimgitterwiderstand und dem Schrimgittelko Cg2 als Widerstand. Den Schrimgitterwechseltrom kennen wir ja. Er betrug: 11mA-1,8mA=deltaIg2=9,2mA. Diese 9,2mA sollen nun maximal 5V Spannunsgabfall an der Parallelschaltunga us Rg2 und Cg2 verursachen.
Wir wissen von Parallschaltungen von Widerständen, dass der Gesamtwiderstand immer kleiner als die beiden Einzelwiderstände ist. Der von uns gesuchte Gesamtwiderstand aus dem Blindwiderstand von Cg2 und Rg2 ist also kleiner, als Cg2 und kleiner als Rg2. Würden wir für unsere Schätzung Rg2 weglassen, dann würden wir Cg2 überschätzen. das macht uns aber garnichts. Wir wollen ja wissen wie groß der Cg2 mindestens sein soll. Tun wir also so, als würden bei den 9,2mA bei der unteren Grenzfrequenz 5V Wechselspannung am Cg2 abfallen dürfen.
Daraus ergibt sich:
5V/9,2mA=Cg2=540Ohm
Macht bei 40Hz (die E-saite auf dem Bass hat 42Hz) 7,3uF. Ich würde 10uF verbauen.
Viele Grüße
Martin