Sorry, es wurde etwas lang, bitte nicht erschlagen fühlen...
Also, ihr habt beide Recht.
Es ist nur etwas komplitziert
- ich überlege, welcher der beiden genannten Trafos besser geeignet wäre für ein SLO100-Projekt, also entweder der 296VA mit Sec1 = 340 -0 -340VAC woraus ich ca. 480V DC bekäme, obwohl der SLO eher Richtung 500VDC ausgelegt ist; Oder aber den 340VA mit sec1 = 350VAC, also theoretisch knappen 495VDC. Der 296Va liefert "nur" 0,27A auf der HV-Schiene; Wenn ich so den maximalen HV-Strombedarf von 4x 6L6GC bei um die 500V und 5x 12AX7 überschlage, komme ich auf ca. 0,53A. Der Ämp fährt ja nicht auf Dauerleistung in dem Bereich, aber ich kann mangels Erfahrung nicht abschätzen, wie viel weiter unten ich da mit der Stromversorgung ansetzen darf. Die 0,27A vom 296VA scheinen mir dafür jedenfalls doch zu knapp bemessen zu sein.
Jetzt habe ich aber wie oben erwähnt mangels Kenntnis über Netztrafos Probleme damit, die Werte für den 340VA zu interpretieren; Da steht, Sek1 liefert
2*0,4A. Ich vermute, damit ist die Stromstärke je Leitung gemeint, also hätte ich nach der Gleichrichtung ja immernoch 0,4A, ist das korrekt? Aber das wäre ja immerhin schon näher an den gewünschten 0,53A dran.
Da, falls das alles stimmt, der 296VA wegfällt, ergeben sich für mich im Hinblick auf den 340VA drei bzw. vier Fragezeichen
:
Fragezeichen 1) Die Sek2-Wicklung; Diese ist von den Werten her identsich mit der Sek1-Wicklung angegeben, und ich frage mich nun, ob ich die Sek2-Wicklung auch für den Amp nutzen kann, ohne eine zweite, eigens gesiebte DC-Schiene aufzumachen? Ich bin hier absolut nicht sicher, ob die zwei Wicklungen irgendwie miteinander verschaltet werden können, damit ich bei gleicher DC-Spannung vielleicht sogar 0,8A rausschlagen kann;
Also wenn ich a) Sek1 und Sek2
vor dem Gleichrichter parallel schalte, ergeben sich nach meinem Verständnis zwei Möglichkeiten; Wenn die Anschlüsse Phasenvertauscht aneinander liegen, habe ich quasi einen Kurzschluss, und die +350V-Welle nivelliert die -350V-Welle und umgekehrt. Liege ich da richtig? Wie sieht das dann im Trafo aus, was geht da kaputt? Die andere Möglichkeit wäre nach dieser Logik, dass sich die Spannungen, die sich Phasenverschoben nivellieren, in Phase geschaltet addieren müssten, und ich hätte auf einmal 700VAC bzw. fast 1000VDC am Gleichrichter anliegen, ist das richtig so? In diesem Falle würde das für die Dioden im Gleichrichter (mir schweben 1N4007 vor, denn die gibts auch im Shop) schon recht eng werden, mal ganz von der viel zu hohen Ub abgesehen. Aber stimmt das soweit, und wurden sich bei dieser Parallelschaltung in Phase auch die Stromstärken auf 0,8A max. addieren?
Variante b) verwirrt mich am meisten, da spielt das Mittelanzapfungsproblem mit rein: Was wäre, wenn man Sek1 und Sek2 in Reihe betreiben würde, indem man die "zur Mitte" der Wicklungen gelegenen Leitungen miteinander verbindet, also sozusagen "+ an -" (zumindest für eine Netzwellenlänge, oder wie der korrekte Terminus da lautet)? Verdoppelt sich damit nicht die "Fläche", die für die Induktion zur Verfügung steht, so dass man an den anderen Enden auf 700VAC @ 2*0,8A käme, oder ist das Mumpitz? Und wenn ich die beiden Wicklungen in der Mitte nicht nur einfach verbinde, sondern auch auf Massepotenzial lege, habe ich dann quasi das gleiche wie eine 350 - 0 - 350-Wicklung, und wenn ja, bei welcher Leistung?
Variante c) erscheint mir als die Möglichkeit, Sek1 und Sek2 jeweils für sich erst gleichzurichten, und
dann auf DC-Seite zusammenzuführen; Nun hätte ich nach meinem Verständnis zwei gleiche Spannungsquellen, die quasi parallel geschaltet sind, also müsste ich ja auch die doppelte Leistung (=0,8A) zur Verfügung haben, oder? Wenn das klappt, wie sieht es dann mit den Siebstufen aus, muss man da etwas anpassen, weil "doppelt so viele Stromquellen auch doppelt so viel Ripple erzeugen"?
Ich weiß, das sind alles sehr wüste Überlegungen, ich hoffe, ihr könnt mir folgen.
Fragezeichen 2) geht in Richtung "Netzteilkompression"; Ich bin wie oben erwähnt nicht sicher, wie weit ich mit den Stromstärkenanforderungen der HV-Leitung runter gehen kann/darf/soll, weil ich zum einen nicht abschätzen kann, unter welchen Betriebsbedingungen der Strom der HV-Schiene nicht mehr ausreicht, und eine Kompression im Sound durch das Netzteil eintrifft, geschweige denn, wie das dann überhaupt klingt. Aber der SLO hat als zweites (?) Siebglied im Netzteil eine LC-Schaltung mit Drossel, und sowas habe ich auch noch nicht gehört, ich kenne bisher nur Amps mit C/RC-Netzfiltern. Ein LC-Filter soll ja klanglich auch schon einen etwas komprimierenden Charakter haben, und ich weiß nicht, ab wann dieser Faktor - vermischt mit evtl. Kompression durch zu wenig Strom auf der HV-Leitung - unangenehm wird, hat da jemand eine Vorstellung von oder entsprechendes schonmal gehört? Ist vermutlich wie überall Geschmackssache?
Was für eine Drossel sollte ich hier eurer Meinung nach wohl nehmen, ich habe irgendwo gelesen 5H/200mA? Da das LC-Glied hinter dem Anodenspannungsabgriff für die Endstufenröhren liegt, müssten die 200mA ausreichen, da die Belastung durch Schirmgitter und Vorstufenröhren 108mA ja nciht überschreiten sollte. Meint ihr, das ist ein guter Wert? Wäre praktisch, denn mit der Hammond 193H gäbe es auch hier direkt wieder was entsprechendes im Shop. Im original-Layout scheint die Drossel um 90° gedreht zum Netztrafo angeordnet zu sein (NT und AÜ sind aber parallel angeordnet?):
http://www.bluescitymusic.com/Soldano-SLO-100-wiring-1.jpg und
http://www.bluescitymusic.com/Soldaon-SLO-100-chasis.jpgWie verfahre ich da bezügl. der Anordnung der Drossel, wenn ich einen Ringkerntrafo als Netztrafo nehmen will?
Fragezeichen 3 und 4) Da der 340VA-Trafo (vermutlich?) keine Mittelanzapfung hat soweit ich das verstehe, weicht die Gleichrichtung ja dann etwas von dem Schema im Schaltplan ab, das GoFlo schon angesprochen hat; Anstatt der Dioden in Reihe müsste ich dann ja einen Brückengleichrichter einsetzen. Das sollte für die Spannungsversorgung der DC-Seite erstmal keine Rolle spielen so weit ich verstanden habe, da im SLO-Schaltplan ja die Mittenanzapfung der HV-Wicklung genau so direkt auf Massepotenzial liegt, wie es beim Einsatz des Brückengleichrichters die Minus-Seite des DC-Kreises tut, ist das erstmal korrekt so?
Nun geht es um den Standby-Schalter, der im originalen Schaltbild direkt hinter der dicken C-Filterstufe des Netzteils liegt; Ein freundlicher Helfer hatte mir,
ausgehend vom originalen (??) 360-0-360er-Netztrafo, empfohlen, diesen Standbyschalter (ich würde als Netz- und Standbyschalter vermutlich diesen hier nehmen:
http://www.tube-town.net/ttstore/product_info.php/info/p478_Netzschalter-Marshall-JCM-Serie.html. Weiß jemand, bis zu welcher Spannung die sicher trennen?) lieber zwischen Masse und Mittelanzapfung der HV-Wicklung zu legen, also quasi von der DC auf die AC-Seite, da hier eine geringere Spannung herrscht, und so das Risiko von Spannungsüberschlägen etwas reduziert sein dürfte, soweit ich seinen Ratschlag verstanden habe.
Wenn ich nun aber keine 360-0-360er HV-Wicklung benutze, sondern 350V-350V per Brückengleichrichter gleichrichte, habe ich ja keine Mittenanzapfung, deren Masseverbindung ich schalten könnte; Wenn ich den Standby-Schalter hier an die "Masse", also in dem Fall quasi den Minuspol des Gleichrichters, ansetzen würde, würde ich ja auch wieder nur den (500V) DC-Kreis damit schalten, und hätte somit nichts dazugewonnen im Sinne von einer Spannungsentlastung für den Standbyschalter. Die eigentliche Frage ist, ob ich hier, bei Verwendung eines Brückengleichrichters, nicht korrekter Weise
beide (Sek1 AC-)Leitungen der HV-Wicklung für den Standby schalten müsste, wenn ich eine geringere Spannungsbelastung für den Standbyschalter erzielen will? Oder würde hier vielmehr sekundärseitig schon gar kein AC-Strom zum Gleichrichter fließen, wenn ich
nur eine HV-Leitung schalte? Soweit ich das verstehe, kommt ja kein Wechselstromkreis zu Stande, wenn ich schon auf einer Seite der 350-350 die Verbindung Kappe, anders als es bei einem 360-0-360er-Trafo wäre, wo bei
einer getrennten "Plus"-Seite immernoch
die andere "Plus"-Seite einen Stromkreis bildet, korrekt?
Was mir auch nicht ganz klar ist, kann es durch irgendeine Schaltung passieren, dass "induzierte Leistung" irgendwie in einer Sekundärwicklung "stecken" bleibt, und irgendwann den Trafo beschädigt? (Spannungsüberschlag oder sowas?) Oder anders gefragt, in welchem Fall findet im Netztrafo ein Spannungsüberschlag von einer Wicklung auf eine andere statt, und habe ich da mit meinen Überlegungen zur Standbyverschaltung derartiges zu befürchten? Der einfache Hintergrund für all dies ist, dass ich, wenn ich nur einen der zwei Pole des Standby-Schalters für die tatsächliche,
sichere Trennung der Anodenspannung verwenden könnte, ja noch den anderen Pol frei hätte, für die Schaltung einer hübschen Funzel oder sowas.
So, das war ziemlich viel, ich hoffe ich hab keinen plattgewalzt mit dem Roman und bin gespannt auf Antworten, schonmal vielen Dank.