Hallo Robert,
noch etwas genauer und die Antwort auf die gestellte Frage warum 500k im Höhenzweig sowie die nicht gestellte Frage nach den unterschiedlichen werten für R3 und R4 (fest):
Bässe:
-> alle C bis auf C3 sind Unterbrechung
-> aktiver Zweig 2 x R3 + R4 (Poti)
-> Parallelzweig (2 x R4 (fest) + R5) || (2 x R6 + R7) = 107,2k || 503,6k ~ 80k
Mitten:
-> C3 ist Kurzschluss, C6 ist Unterbrechung
-> aktiver Zweig 2 x R4 (fest) + R5
-> Parallelzweig (2 x R3) || (2 x R6 + R7) = 22k || 503,6k ~ 42k
Höhen:
-> alle C bis auf C6 sind Kurzschluss
-> aktiver Zweig 2 x R6 + R7
-> Parallelzweig (2 x R3) || (2 x R4 (fest)) = 11k || 7k2 ~ 5k4
Du siehst, je nach Verhalten der Kondensatoren (Kurzschluss oder Unterbrechung) im betrachteten Frequenzbereich sind die 3 Frequenzbereiche durchaus unterschiedlich bedämpft.
Außerdem siehst du, dass du die Vorwiderstände weder für Bässe noch Mitten nullen darfst: Die Bedämpfung der Höhen würde total sein, weil der Parallelzweig 0 Ohm hätte!
Auch mit "vernünftigen" Werten für R3 und R4 (fest) ist die Bedämpfung der Höhen immer deutlich stärker als die der Bässe und auch noch der Mitten, weil die Potis in beiden Parallelzweigen kurzgeschlossen sind. Nach meiner "mindestens Faktor 10" Regel dürfte der Quellwiderstand der treibenden Stufe nur 540 Ohm betragen!
Damit hast du auch die Antwort auf die Frage nach dem höheren Wert für das Höhen-Poti: Das Vehältnis Poti / Vorwiderstand (R7 / R6) muss im Höhenzweig deutlich größer sein, um die stärkere Bedämpfung durch die Parallelzweige auszugleichen.
Im Mittenbereich ist es nicht ganz so schlimm, aber auch hier wird die untrerschiedliche Bedämpfung durch das Verhältnis Poti / Vorwiderstand ausgeglichen: Die Potis sind gleich, aber die Vorwiderstände aus diesem Grund anders.
Damit denke ich ist alles am Baxandall / Kuhschwanz erklärt, was man ohne quantitative Berechnung sagen kann.
Viel Spaß damit