Moin Sven,
ich hab ja so meine Probleme mit den Faktoren, die da in dem Hammond-Blatt stehen. So schreiben sie z.B. bei Brückengleichrichtung mit C-Last, der Gleichspannungsanteil betrüge 0.9 * UAC - das ist aber so Unsinn oder zumindest missverständlich. Die Gleichspannung über dem C ist natürlich abhängig vom Ladeelko. Dieser Faktor 0.9 beschreibt die Gleichspannung ohne "energiespeichernde Last" - es ist nämlich der Mittelwert einer gleichgerichteten Sinus-Schwingung, und die ergibt sich aus
(2*Wurzel2*UAC) / pi.
2*Wurzel2/pi ist genau 0.9 - daher kommt also dieser Faktor.
Genau das gleiche gilt auch für Choke Input - das ist im neuen Wizard-Buch ganz gut beschrieben. Die Choke regelt die Spannung auf genau diesen Wert, weil sie diesen (theoretischen) Gleichspannungsanteil durchlässt, sämtliche Wechselspannungsanteile aber herausfiltert. Theoretisch deshalb, weil das für eine ideale Drossel gilt. Eine reale Drossel braucht einen Mindestlaststrom, um die Spannung zu stabilisieren. Ist der Laststrom zu gering oder geht gegen Null, steigt die (Leerlauf-)Spannung genauso auf die AC-Spitzenspannung.
Nach meinem Verständnis gilt dieser Faktor 0.9 unabhängig von der Drosselinduktivität, solange die Bedingung erfüllt ist, dass der Mindestlaststrom fließt.
Gruß, Nils
Edit: Oder, anders formuliert: Solange ein genügend großer Laststrom fließt, ist es für die Spannung egal, wie groß die Induktivität ist. Wie groß sie sein muss, damit die Spannung nicht unzulässig ansteigt, wird dadurch bestimmt, wie gering der Lastrom ist. Das Problem ist i.d.R. also der Leerlauffall.